






mmHg; P � 0.05) as shown in Fig. 1B. Antioxidant treatment
with tempol or apocynin significantly attenuated the increase in
MAP in eNOS KO mice during HS intake (124 � 2 to 134 �
3 and 126 � 3 to 139 � 4 mmHg; P � 0.05; Fig. 1B).

In agreement with previous studies (15, 29), eNOS KO mice
not only exhibit higher BP but these mice display lower heart
rate (HR) compared with WT mice (541 � 12 vs. 613 � 18
beats/min). There were no significant changes in HR during the
2-wk experimental period in both WT and eNOS KO mice with
HS intake (626 � 13 to 608 � 10 and 539 � 18 to 518 � 19
beats/min, respectively). Furthermore, tempol treatment did not
alter HR in WT or in eNOS KO mice with NS intake (612 � 17
to 598 � 15 and 548 � 16 to 523 � 18 beats/min, respectively)
or HS intake (621 � 18 to 594 � 14 and 541 � 21 to 518 � 15
beats/min, respectively). Apocynin administration also did
not alter HR during the experimental periods in WT or
eNOS KO mice with NS intake (628 � 12 to 623 � 14 and
544 � 19 to 538 � 16 beats/min, respectively) as well as
with HS intake (616 � 17 to 613 � 18 and 551 � 14 to 548 � 13
beats/min, respectively).

Renal excretory responses in WT and eNOS KO mice.
Twenty-four-hour urine samples were collected from mice that
were implanted with radiotransmitters as well as nonimplanted
mice. There were no significant differences in excretory pa-
rameters between implanted and nonimplanted mice. Thus,
results are combined for the presentation of mean data in
groups (n � 6–8 in each group). There were no differences in
sodium excretion among the groups on NS intake (Fig. 2A). HS
intake increased sodium excretion significantly in all groups of
mice as expected (Fig. 2B). In both WT and eNOS KO mice

fed a NS diet, chronic tempol as well as apocynin treatment did
not cause any significant alterations in daily sodium excretion.

Figure 3 illustrates the daily urinary excretion rate of NO
metabolites, nitrate/nitrite (UNOxV). Basal UNOxV was not signif-
icantly different between WT and eNOS KO mice (0.45 � 0.03
and 0.38 � 0.05 �mol/day) and NS intake did not alter UNOxV
in either group. HS intake for 2 wk induced similar increases in
UNOxV in both WT and eNOS KO mice (0.65 � 0.04 and 0.58 �
0.05 �mol/day, respectively; Fig. 3B). However, chronic tem-
pol in WT fed a HS diet caused further increases in UNOxV
(0.85 � 0.06 �mol/day), but this increase was not seen in
eNOS KO fed a HS diet (Fig. 3B). Apocynin treatment did not
significantly affect UNOxV in either WT or eNOS KO mice.

As shown in Fig. 4, basal levels of 24-h urinary 8-isopros-
tane excretion rates (UISOV) were not significantly different in
WT and eNOS KO mice (2.4 � 0.3 and 2.6 � 0.2 ng/day).
Tempol and apocynin did not alter UISOV in either WT (2.1 � 0.2
and 2.4 � 0.2 ng/day, respectively) or eNOS KO mice (2.3 � 0.2
and 2.5 � 0.3 ng/day, respectively) during NS intake. HS
intake increased UISOV in both WT and KO mice; however,
the magnitude was markedly higher in eNOS KO mice com-
pared with WT mice (4.6 � 0.3 vs. 3.8 � 0.2 ng/day; Fig. 4B).
Chronic tempol or apocynin treatment attenuated UISOV in
both WT (2.7 � 0.4 and 3.0 � 0.3 ng/day, respectively) and
eNOS KO mice (3.3 � 0.2 and 3.6 � 0.2 ng/day, respectively)
in response to HS intake (Fig. 4B).

Renal tissue analysis in WT and eNOS KO mice. Concen-
tration of MDA was measured in the renal tissues of WT and
eNOS KO mice collected at the end of experimental period. As
shown in Fig. 5A, MDA level was similar in all groups of mice

Fig. 2. Urinary sodium excretion (UNaV) in WT and eNOS-
deficient mice (KO) untreated and treated with T or A
during NS (A) or HS (B) intake. Compared with basal
values, HS intake significantly increased UNaV in all goups
(P � 0.05).

Fig. 3. Urinary nitrate/nitrite excretion (UNOxV) in WT
and KO untreated and treated with T or A during NS
(A) or HS (B) intake. Compared with basal values, HS
intake significantly increased UNOxV in all goups (P �
0.05). *P � 0.05 vs. WT HS.
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in NS-fed mice. Increases in MDA by HS intake were mark-
edly greater in eNOS KO mice compared with WT (Fig. 5B).
Both tempol and apocynin caused significant reduction in the
tissue level of MDA during HS intake (Fig. 5B).

In NS intake state, nitrotyrosine concentration in the renal
tissue was slightly lower in eNOS KO mice compared with WT
(Fig. 6A). HS intake induced increases in nitrotyrosine level
only in WT mice but not in eNOS KO (Fig. 6B). Tempol and
apocynin prevented the rise in nitrotyrosine level in HS-fed
WT mice but no changes were observed in HS-fed eNOS KO
mice.

As shown in Fig. 7A, protein expression of gp91phox subunit
in the renal tissue was similar in WT and eNOS KO mice.
However, HS intake induced protein expression of gp91phox

subunit of NADPH oxidase, the magnitude of which is greater
in eNOS KO mice compared with that in WT mice (Fig. 7B).
Both tempol and apocynin prevented this enhancement in the
gp91phox protein expression in HS-fed WT as well as eNOS
KO mice (Fig. 7B).

DISCUSSION

The present study demonstrates that chronic HS intake for 2
wk causes a substantial increase in arterial BP in eNOS KO
mice, but not in WT mice. Furthermore, this study shows for
the first time that the increase in BP during HS intake was
markedly attenuated during treatment with the O2

� scavenger
tempol or NADPH oxidase inhibitor apocynin in eNOS KO
mice. Previous studies also showed that antioxidant treatment
significantly attenuates BP in several hypertensive models,
particularly those associated with salt sensitivity (1, 30, 39, 43,

47, 51). In an earlier study in rats (14), we also demonstrated
that the enhanced O2

� activity caused by chronic administration
of a nonspecific inhibitor of NOS contributes to the develop-
ment of salt sensitivity. The present findings indicate that the
development of salt-sensitive hypertension in eNOS KO mice
is critically dependent on an associated enhancement in O2

�

activity induced by HS intake. Although HS also induces O2
�

production in WT mice, an oxidative balance is tightly main-
tained by the optimal production of NO, which serves an
important antioxidative function. However, in eNOS KO mice,
HS intake tilted this balance due to a lack of NO generation by
eNOS and thus resulted in increased oxidative stress. Previous
data from our laboratory (13, 14, 20, 21) as well as from others
(1, 29, 30, 39, 45) suggested that such alterations in the
oxidative balance modulate renal function, contributing to the
pathophysiology of salt sensitivity.

Previous studies (14, 20, 35, 36, 47, 51) validated that
changes in plasma or urinary 8-isoprostane levels are closely
correlated with endogenous O2

� activity and thus UISOV serves
as a reliable marker for oxidative stress. Although UISOV was
increased due to HS intake in both strains of mice, the eNOS
KO mice exhibited greater UISOV than WT mice. Furthermore,
renal tissue levels of MDA as a product of lipid peroxidation
were markedly elevated in HS-fed eNOS KO mice compared
with HS-fed WT mice suggesting the enhanced local activity of
O2

� in the kidney. Thus, the present findings indicate that O2
�

activity is significantly enhanced in eNOS KO mice during HS
intake. It should be noted that only eNOS KO mice showed the
salt sensitivity and the increment in BP in response to HS
intake. These data indicate that functional eNOS activity is

Fig. 4. Urinary 8-isoprostane excretion (UISOV) in WT
and KO untreated and treated with T or A during NS
(A) or HS (B) intake. *P � 0.05, **P � 0.001 vs.
basal, #P � 0.05 vs. corresponding untreated groups.

Fig. 5. Renal malondialdehyde (MDA) concentration
in WT and KO untreated and treated with T or A
during NS (A) or HS (B) intake. *P � 0.05 vs.
corresponding WT groups. #P � 0.05 vs. correspond-
ing untreated groups.
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essential to offset the effects of HS-induced increase in O2
�

activity particularly via NADPH oxidase, a phenomenon that
appears necessary for the maintenance of appropriate sodium
balance and normal BP. We observed that both tempol and
apocynin treatment attenuated the increase in UISOV in
response to HS intake in both strains. However, the basal
level of oxidative stress or O2

� production in mice on NS
diet is maintained at minimal levels due to efficient regula-
tion by endogenous antioxidant mechanisms and thus no
further reduction of O2

� activity would be expected during
the treatment with tempol or apocynin. In agreement, pre-
vious studies with chronic administration of tempol (14, 36,
47) and apocynin (33) in rats on NS diets did not cause any
significant decreases in urinary excretion or plasma levels of
8-isoprostane.

The pharmacological inhibition of NO production in various
studies in dogs (20), rats (14, 24, 30, 37, 40, 51), and mice (41)
caused changes in UNOXV levels that correlate with NO pro-
duction. In the present study, mice fed a HS diet had higher
UNOxV than the mice fed a NS diet, indicating that HS
increases NO formation as reported previously (7, 8, 30, 37).
The fact that UNOxV increased in eNOS KO mice fed on HS
diet suggests that NOS isoforms other than eNOS also contrib-
uted to the NO generation in response to HS intake (22, 25, 37,
48). Although the activation of other NOS isoforms by HS
intake has been demonstrated in the kidney indicating their role
in the regulation of sodium balance (7, 11, 22, 23), this

compensatory mechanism seems to be inadequate in eNOS KO
mice to protect against oxidative stress and salt sensitivity in
these mice. Moreover, tempol treatment during HS intake
caused an increase in UNOxV in WT but not in eNOS KO mice,
indicating that eNOS-induced NO generation may be more
involved in mediating its antioxidative function against endog-
enous O2

� activity (17, 32). This finding also indicates that the
attenuation of the hypertensive response by tempol or apocynin
in eNOS KO mice is not due to an increase in NO bioavail-
ability, but rather to a decrease in O2

� activity. It is likely that
in the renal tubules, the eNOS-induced NO generation is
involved in reducing HS induced O2

� generation that en-
hances sodium reabsorptive function (8, 38) and thus, con-
stitutes an important mechanism of salt sensitivity as ob-
served in HS-fed KO mice. Thus, the present results further
support an important role of eNOS-derived NO in providing
protection against HS-induced increases in O2

� activity
which contribute to the development of salt sensitivity and
hypertension (14, 16).

The BP responses to HS intake in the eNOS KO mice could
be attributed to the effects of enhanced O2

� activity modulating
the function of many organs including the kidney (7, 14, 20,
32, 45). Apart from direct vascular effects (13, 17, 21), en-
hanced renal O2

� activity stimulates tubular sodium reabsorp-
tive function leading to sodium retention (13, 20, 21, 38), thus
contributing to the development of salt-sensitive hypertension.
In earlier studies in dogs (20) and in hypertensive NO-deficient

Fig. 6. Renal nitrotyrosine concentration in WT and KO
untreated and treated with T or A during NS (A) or HS
(B) intake. *P � 0.05 vs. corresponding WT groups.
#P � 0.05 vs. untreated WT group.

Fig. 7. Protein expression of gp91phox subunit in the
kidney tissue in WT and KO untreated and treated with
T or A during NS (A) or HS (B) intake. *P � 0.05 vs.
WT groups. #P � 0.05 vs. corresponding untreated
group.
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rats (13), acute administration of tempol into the kidney caused
increases in sodium excretion during NO inhibition supporting
the notion that enhanced O2

� activity under conditions of NO
deficiency modulates renal excretory function leading to so-
dium retention. An augmentation of sympathetic activity due to
enhanced endogenous O2

� activity may also contribute to this
hypertensive response to HS intake (49). However, we ob-
served that HR was not significantly altered in the eNOS KO
mice fed a HS diet, indicating a minimal influence of altered
sympathetic activity in these hypertensive mice.

The exact mechanism by which a deficiency in eNOS
isoform/activity leads to development of oxidative stress in-
duced by HS intake or how eNOS activity limits NADPH
oxidase activity remained unresolved. In the present study, we
found that the renal tissue protein expression of gp91phox

subunit of NADPH oxidase was enhanced by HS intake which
was more pronounced in eNOS KO mice compared with WT
mice. Importantly, both tempol and apocynin prevented such
enhancement in gp91phox protein expression. This would indi-
cate that the activation of NAD(P)H oxidase by HS intake is
one of the major sources of O2

�, at least in the kidney, as shown
previously (10, 29, 30, 45). In agreement, we also observed
that the inhibitor of NADPH oxidase apocynin attenuated the
development of salt-sensitive hypertension in eNOS KO mice.
Although apocynin may not be regarded as a highly specific
inhibitor of vascular NADPH oxidases (9), it is to be noted that
the currently available more specific inhibitors cannot be uti-
lized in in vivo studies, although they can be used in an in vitro
experiment. Thus, apocynin is still the drug of choice as an
orally active NADPH oxidase inhibitor. Moreover, it has been
demonstrated that the upregulation of NADPH oxidase pro-
teins in renal tissue from rats given HS diet alone (30, 39) or
in combination with angiotensin II administration (33) was
ameliorated by chronic apocynin treatment. Thus, it seems
likely that an inhibition of NADPH oxidase in the renal tissue
due to apocynin treatment is linked to the amelioration of
salt-sensitive hypertension in eNOS KO mice.

NO and O2
� are continuous products of cellular metabolism

and interact with each other in biological tissues (11, 18, 34).
Normally, tissue O2

� levels are kept at minimal levels by the
anti-oxidative function of NO as well as SOD (20, 21, 30, 45,
48). However, when NO production is diminished, this balance
is altered, allowing accumulation of O2

� in the tissue because of
its inadequate removal by NO (14, 17, 20, 21). Accordingly, in
the present study, we observed that HS intake caused an
increase in renal tissue MDA and UISOV that was greater in
eNOS KO mice compared with WT, indicating that there was
an increase in O2

� accumulation when NO production is defi-
cient. Many previous studies from our laboratory (14, 18, 20,
24) as well as others (7, 15, 17, 32, 42, 48) have also postulated
a protective role of NO-O2

� interaction in the regulation of
renal and vascular function. The possible formation of per-
oxynitrite due to NO-O2

� interaction in WT mice during HS
intake also seems to exert a protective role in maintaining
systemic arterial pressure. We demonstrated in a recent study
in rats (24) that peroxynitrite at a low infusion rate produced
renal vasodilation, but higher infusion rates caused vasocon-
striction. The vasodilatory action of peroxynitrite may be due
to reverse formation of NO from peroxynitrite by the action of
NOS that acts as nitrate reductase in this case as suggested
earlier (24). In the present study, we determined the concen-

tration of nitrosylated protein, nitrotyrosine, in the renal tissue
as a marker for peroxynitrite activity. It was observed that
under normal condition, eNOS KO mice exhibit lower concen-
tration of nitrotyrosine compared with that in WT mice. More-
over, HS intake increased nitrotyrosine in WT mice but not in
eNOS KO mice (Fig. 6). Thus, it is likely that in WT mice
during HS intake, peroxynitrite was formed at a level that
serves a protective function in the regulation of systemic
arterial pressure. However, such protective function was not
present in eNOS KO mice where a lower peroxynitrite pro-
duction has been suggested in the kidney (27).

It could be argued that changes in overall oxidative stress
may possibly be due secondarily to enhanced renin-angiotensin
system (RAS) in these eNOS KO mice which may also be
influenced or inhibited by superoxide scavenging/NADPH ox-
idase inhibition. In the present study, we have not measured
plasma renin content or angiotensin II concentration in plasma
or renal tissue. However, a previous study (26) reported that
increasing the salt intake from a low to a high level for 3 days
caused similar decreases in plasma renin concentration (PRC)
in both eNOS KO and WT mice. Nevertheless, it might be
possible that a prolonged intake of HS diet for 2 wk induced a
different response on PRC or kidney angiotensin II level that
influenced the hypertensive response in eNOS KO mice in the
present study. Further studies would be needed to examine the
possible contribution of RAS components in the responses to
prolonged HS intake in these eNOS KO mice. However, it was
also reported that chronic treatment with tempol or apocynin
lowered oxidative stress but not the enhanced plasma and
kidney angiotensin II levels in hypertensive transgenic ren2
rats (12). Thus, it was unlikely that the reduction in BP in
response to tempol/apocynin treatment might be related to any
reduction in RAS components in the present study.

In conclusion, these data demonstrate that an enhanced O2
�

activity induced by HS intake under deficient NO production
by eNOS enzyme contributes substantially to the development
of salt-sensitive hypertension.
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